Statistik

  • Pencipta
    Topik Pertanyaan
  • #9512
    Aal Rifaldi
    Peserta

    Carilah Persamaan regresi linier siderhana dari data dibawah ini
    10 Perusahaan
    Penjualan (Y) = 65, 62, 75, 70, 89, 94, 77, 90, 95, 68
    Promosi (X) = 22, 20, 39, 24, 30, 32, 19, 29, 33, 25

Jawaban :

Melihat 1 balasan (dari total 1)
  • Penulis
    Jawaban
  • #9526
    StatistikaA
    Peserta

    Dari data diperoleh
    \(\sum{X}=273\), \(\sum{Y}=785\),
    \(\sum{XY}=21861\), \(\sum{X}^{2}=7821\), \(\sum{Y}^{2}=63029\) \(n=10\)
    Persamaan regresi
    \(Y=a+bX\)
    \[\begin{aligned}b&=\frac{n\sum{XY}-\sum{X}\sum{Y}}{n(\sum{X}^{2})-(\sum{X})^{2}}\\&=1\text{,}169\end{aligned}\]
    \[\begin{aligned}a&=\frac{\sum{Y}(\sum{X^{2}}-\sum{X}(\sum{XY})}{n(\sum{X}^{2})-(\sum{X})^{2}}\\&=46\text{,}572\end{aligned}\]
    Maka persamaan regresi
    \[\begin{aligned}Y &= 46\text{,}572 + 1\text{,}169X\end{aligned}\]

Melihat 1 balasan (dari total 1)
  • Anda harus log masuk untuk menambahkan jawaban.